Methamphetamine-induced structural plasticity in the dorsal striatum.
نویسندگان
چکیده
Repeated exposure to psychostimulant drugs produces long-lasting changes in dendritic structure, presumably reflecting a reorganization in patterns of synaptic connectivity, in brain regions that mediate the psychomotor activating and incentive motivational effects of these drugs, including the nucleus accumbens and prefrontal cortex. However, repeated exposure to psychostimulant drugs also facilitates a transition in the control of some behaviors from action-outcome associations to behavior controlled by stimulus-response (S-R) habits. This latter effect is thought to be due to increasing engagement and control over behavior by the dorsolateral (but not dorsomedial) striatum. We hypothesized therefore that repeated exposure to methamphetamine would differentially alter the density of dendritic spines on medium spiny neurons (MSNs) in the dorsolateral vs. dorsomedial striatum. Rats were treated with repeated injections of methamphetamine, and 3 months later dendrites were visualized using Sindbis virus-mediated green fluorescent protein (GFP) expression in vivo. We report that prior exposure to methamphetamine produced a significant increase in mushroom and thin spines on MSNs in the dorsolateral striatum, but a significant decrease in mushroom spines in the dorsomedial striatum. This may be due to changes in the glutamatergic innervation of these two subregions of the dorsal striatum. Thus, we speculate that exposure to psychostimulant drugs may facilitate the development of S-R habits because this reorganizes patterns of synaptic connectivity in the dorsal striatum in a way that increases control over behavior by the dorsolateral striatum.
منابع مشابه
Deficits in behavioral sensitization and dopaminergic responses to methamphetamine in adenylyl cyclase 1/8‐deficient mice
The cAMP/protein kinase A pathway regulates methamphetamine (METH)-induced neuroplasticity underlying behavioral sensitization. We hypothesize that adenylyl cyclases (AC) 1/8 mediate these neuroplastic events and associated striatal dopamine regulation. Locomotor responses to METH (1 and 5 mg/kg) and striatal dopamine function were evaluated in mice lacking AC 1/8 (DKO) and wild-type (WT) mice....
متن کاملRepeated Methamphetamine Administration Differentially Alters Fos Expression in Caudate-Putamen Patch and Matrix Compartments and Nucleus Accumbens
BACKGROUND The repeated administration of psychostimulant drugs produces a persistent and long-lasting increase ("sensitization") in their psychomotor effects, which is thought to be due to changes in the neural circuitry that mediate these behaviors. One index of neuronal activation used to identify brain regions altered by repeated exposure to drugs involves their ability to induce immediate ...
متن کاملProteomics Analysis of Dorsal Striatum Reveals Changes in Synaptosomal Proteins following Methamphetamine Self-Administration in Rats
Methamphetamine is a widely abused, highly addictive drug. Regulation of synaptic proteins within the brain's reward pathway modulates addiction behaviours, the progression of drug addiction and long-term changes in brain structure and function that result from drug use. Therefore, using large scale proteomics studies we aim to identify global protein expression changes within the dorsal striat...
متن کاملContext-induced reinstatement of methamphetamine seeking is associated with unique molecular alterations in Fos-expressing dorsolateral striatum neurons.
Context-induced reinstatement of drug seeking is a well established animal model for assessing the neural mechanisms underlying context-induced drug relapse, a major factor in human drug addiction. Neural activity in striatum has previously been shown to contribute to context-induced reinstatement of heroin, cocaine, and alcohol seeking, but not yet for methamphetamine seeking. In this study, w...
متن کاملEstrogen and Progesterone Replacement Therapy Prevent Methamphetamine-Induced Synaptic Plasticity Impairment in Ovariectomized Rats
Background: Methamphetamine (METH) is one of the most popular psychostimulants which produce long lasting learning and memory impairment. Previous studies have indicated that estrogen and progesterone replacement therapy attenuate cognitive impairment against a wide array of neurodegenerative diseases. Present study was designed to figure out the effects of estrogen, progesterone alone or in co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2007